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Abstract: We propose a Multivariate Gaussian Process Factor Model to estimate low

dimensional spatio-temporal patterns of finger motion in repeated reach-to-grasp

movements. Our model decomposes and reduces the dimensionality of variation

of the multivariate functional data. We first account for time variability through

multivariate functional registration, then decompose finger motion into a term that

is shared among replications and a term that encodes the variation per replica-

tion. We discuss variants of our model, estimation algorithms, and we evaluate

its performance in simulations and in data collected from a non-human primate

executing a reach-to-grasp task. We show that by taking advantage of the repeated

trial structure of the experiments, our model yields an intuitive way to interpret

the time and replication variation in our kinematic dataset.
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1. Introduction

Accurate description of the variability in finger movement is central to un-

derstanding nervous system production of manual dexterity. In addition, char-

acterization of finger motion variability is critical to the successful engineering of

brain-computer interaction devices, where the goal is to provide individuals who

have lost a limb with the ability to control a prosthetic hand. The human hand

is enormously flexible but also hard to model because it contains over 20 degrees

of freedom, mechanical constraints and, plausibly, complex and non-linear inter-

actions among its components. There is much variability among subjects and

even when the same subject performs the same grasp, two replications present

different multidimensional trajectories. Part of the variability may be under-

stood as a result of the constraints among the fingers, and this has led to the use

of lower-dimensional representations known as synergies Santello, Flanders, and

Soechting (1998); Todorov and Ghahramani (2004); Mason, Gomez, and Ebner

(2001); Mason et al. (2004); Soechting and Flanders (1997); Pesyna, Pundi, and

Flanders (2011); Thakur, Bastian, and Hsiao (2008). Standard matrix factor-
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ization approaches, like principal components analysis (PCA), can go far in this

direction but do not conform to the repeated-trial structure of most experiments

and, furthermore, confound temporal variability with experimental condition and

kinematic variability. In this paper we adapt a Multivariate Gaussian Process

(MGP) model, also known as the Gaussian Process Factor Analysis model Yu

et al. (2009), to decompose finger motion into two terms: a term that is shared

among all replications of the same reach-and-grasp task and a term that is par-

ticular to each replication and that is modelled with a MGP. This provides a

dynamic lower-dimensional representation of finger motion.

AMacaca mulatta monkey (considered a model for human hands) was trained

to reach and grasp eight different objects presented in different orientations and

spatial locations (Figure 1 of the Supplementary Material). The monkey was

comfortably seated in a primate chair, with one hand restrained and the other free

to move to perform the task. A state-of-the-art motion tracking system (Vicon

Inc) was used to record the three-dimensional (3-D) positions of passive markers

placed on a thin custom made glove worn by the monkey, at a rate of 200Hz.

The markers were positioned at the center of each of the fingers’ phalanges, on

the wrist, and on the back of the hand. Each replication of the reach-to-grasp

task corresponded to a specific condition (i.e. an object presented in a specific

orientation) and constituted a multivariate time series of markers’ position. The

replicated reaches evolved across time somewhat differently on each trial, which

poses a challenge: because important features of the data occur at different times

on different trials, they could get lost when examining trial-averaged effects. In

this paper we align (register) trials before applying our model, and we study the

benefit of doing so.

The two main methodological contributions of our work include the align-

ment (or registering) of the collected multivariate grasping data and the decom-

position and reduction of the dimensionality of the variation of the multivariate

functional data according to the experimental structure: time, replication, and

condition through the fitting of our Multivariate Gaussian Process Factor Model

(MGPFM).

There have been other approaches in the literature to obtain temporal grasp-

ing synergies. For instance, Vinjamuri et al. (2007, 2010a,b) inspired by (d’Avella

and Bizzi, 2005), proposed two convolved-mixture models that use SVD and an

optimization step in their core, to learn a dictionary of time-varying synergies.

While the approach is able to describe time varying phenomena, it does not pro-

vide a generative model of grasping. State-space models are generative models

that have been used to model dynamics of general body motion Wang, Fleet,

and Hertzmann (2008) albeit not finger dynamics. In these models, a Marko-

vian assumption is posited and thus longer range time correlations are unable
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to be directly captured. The model we present in this paper is not a state-

space model—instead, we assume that the observed trajectories are generated

via low-dimensional latent factor trajectories that are drawn directly from a GP,

allowing for longer range correlations to be captured. Fyshe et al. (2012) also

used this idea of modeling latent factor trajectories with GPs to analyze brain

imaging data (MEG). As in Fox and Dunson (2011), Fyshe et al. (2012) as-

sumed a loading matrix that changes over time as well as latent factors, which

are correlated through a hierarchical Bayesian prior, while our model follows the

more traditional setting of latent factor analysis by assuming that the factors are

independent, and a stationary loading matrix.

In the following sections we introduce notation and formally explain our

Multivariate Gaussian Process Factor Model. In addition, with views to clarity

and as a fast reference, we included three summarizing tables in the Supplemen-

tary Material: Table 1 lists and defines the symbols used throughout the paper

including observed variables, latent variables, and parameters being inferred;

Table 2 enumerates the assumptions made on the parameters, and Algorithm 1

summarizes and describes our whole approach.

2. Model

Consider the p-dimensional observed dataset {Y r
i (t) | i = 1, . . . , p; t =

1, . . . , T ; r = 1, . . . , R}, where Y r
i (t) is the ith coordinate at time t of the p-

dimensional trajectory that is the rth replication of an event. For simplicity,

we consider only finitely many time points, but our model is based on Gaussian

Processes and thus it applies to the continuous setting. Here R is the number

of repeated trials, T the number of time slices, and p the number of observed

variables. In our application the observed variables describe the hand kinematics

– they could be position, velocity, acceleration, joint angles or any function or

representation of hand kinematics.

The Multivariate Gaussian Process Factor Model (MGPFM) assumesY r
1 (t)
...

Y r
p (t)

 =

µ1(t)
...

µp(t)

+


∑d

j=1 b1jX
r
j (t)

...∑d
j=1 bpjX

r
j (t)

+

ϵr1(t)
...

ϵrp(t)

 , (2.1)

where µi(t) i = 1, . . . , p are deterministic mean functions, and B = (bij) ∈ Rp×d

is a deterministic factor loadings matrix whose columns correspond to the d latent

factors and rows correspond to the p observed variables. Each latent factor

trajectory Xr
j is drawn iid from an MGP with mean function 0 and covariance

function
∑

(t1, t2) defined by
∑

(·; ·) : [0, 1] × [0, 1] → R, ϵi(t) i = 1, . . . , p are
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iid stationary MGP draws with covariance function Ψ(t1, t2), which we assume

to be diagonal in this work.

Letting Yr(t) = [Y r
1 (t) · · ·Y r

p (t)]
T, µ(t)=[µ1(t) · · ·µp(t)]

T, Xr(t)=[Xr
1(t) · · ·

Xr
d(t)]

T, and ϵr(t) =
[
ϵr1(t) . . . ϵ

r
p(t)

]T
, (2.1) becomes:

Yr(t) = µ(t) +BXr(t) + ϵr(t). (2.2)

To ensure identifiability of the model we assume that BTB is diagonal.

Our model (2.2) decomposes each kinematic trial into a term µ(t) that is

common among replications and a term Xr(t) that is specific to the replication.

The spatial structure of the markers is encoded in the B matrix by summarizing

and mapping down the spatial configuration of the hand to a lower dimension.

Parameter µ(t) does not depend on the specific trial and can be modelled

in two ways: invariant in time as a p-dimensional constant vector, and as a p-

dimensional varying function in time. In the latter case µ can be represented

as a p × T matrix, or more efficiently, through a B-spline basis. The number

of parameters to estimate for µ is p when µ is assumed to be constant, p · T
when µ is allowed to vary freely (with no constraints) as a function of time as

µ = µ(t) ∈ Rp×T , and O(p · c) when µ is described through a B-spline basis

with c the number of basis functions where c << T . While the choice of basis

is not scientifically important, our formulation drastically reduces the number of

parameters to be estimated and it allows us to model the part of the variability

that is common between trials in a smooth fashion.

The parameter Σ corresponds to the covariance matrix of the MGP. The form

of Σ determines the properties of the low dimensional kinematic representation.

Estimating Σ ∈ RT×T implies learning T 2 parameters. While it is possible to es-

timate with no constraints (which we do in some of our analyses), this procedure

is prone to overfitting when there is not much data available or when the observed

data was not drawn from the model. One way to overcome this problem is to im-

pose structure to Σ by assuming that it takes a parametric form. In this work, we

use an stationary exponential covariance function: Σ(i, j) = exp(−(i− j)2/θΣ)

where θΣ controls the width of the diagonal that decays exponentially. But other

functions such as the Matern covariance function are also possible Rasmussen

and Williams (2006). In our case, the exponential covariance function effectively

imposes a prior belief that the latent trajectories are smooth, where θΣ controls

how fast the function varies within a certain window of time.

2.1. Estimation and inference problems

Our estimation algorithms are EM-based. We iterate between parameter

estimation and inference on the latent variables. We refer to the Supplementary

Material for derivation.
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Since the learning algorithm is an EM procedure, it is susceptible to local

optima. To avoid getting stuck in local optima we propose two initialization

methods. The first (MLE ) involves estimating the MLE for a matrix normal dis-

tribution Dawid (1981); Dutilleul (1999); and the second (down-projection) esti-

mates the MGPFM parameters assuming a higher latent dimension and projects

down to the desired dimension. For details see the Supplementary Material.

2.2. Identifiability

We assume orthogonality of the columns of B, an identity covariance for

Xr(t), and a covariance proportional to the identity matrix for ϵr(t). This is

enough to ensure identifiability of the parameters, because the MGPFM is com-

pletely specified by E[Yr(t)] = µ(t) and Cov[Yr(t),Yr(u)] = B · Σ(t, u) · BT +

Ψ(t, u). We assume (Table 2 in the Supplementary Material) Σ(t, t) = 1 and

Ψ(t, t) = ρ · Ip×p where Ip×p, is the identity matrix of dimension p× p. Then the

equation of the variance is fully determined: Var[Yr(t)] = Cov[Yr(t),Yr(t)] =

B ·BT + ρ · Ip×p.

2.3. Variability of predictions and estimates

The main focus of this work is to provide a method for separating variation

that is common across trials from variation that is specific to individual trials. We

use the model as a tool to facilitate this decomposition; we use cross-validation to

assess its adequacy in explaining the variation and predictive uncertainty, which

has the benefit of not requiring the assumption that our model is correct. Alter-

natively, to assess uncertainty about the estimated parameters or its predictions

without cross-validation, one can assume that the model parameters are known.

In this case, the posterior distribution of the latent variables is Gaussian, and

the uncertainty of the predictions can be assessed by inspecting the covariance

matrix for the posterior distribution (Equation S2.13 of the Supplementary Ma-

terial). However, the validity of this inference hinges critically on the correctness

of the model and in this work we do not assume that our model is correct; instead

we are using it as a tool to decompose the variability of the data.

3. Alignment Procedure

In functional data there are two types of variability: amplitude variation

and phase variation Ramsay, Hooker, and Graves (2009); Ramsay and Silverman

(2005). Amplitude variation describes the variability of the sizes of the features

of the kinematic curves; features such as the height of peak velocities of differ-

ent markers recording finger movement during a grasping task; phase variation

describes the variability of the timings of such features of the kinematic curves
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as the variation between the timing of the opening and closing, or between the

peak velocities of the fingers.

We are interested in studying amplitude variations in order to understand

how the movement of the fingers relate to one another. To isolate the amplitude

variation from the phase variation we can transform the time-axis for each trial

so that phase variation between kinematic curves is minimized.

Alignment of the R kinematic curves Yr(t) is accomplished by estimating

monotonically increasing time warping functions hr(t) such that the phase varia-

tion of t → Yr(hr(t)) is minimized across trials r. Note that it is important that

the same function be used across kinematic variables for a fixed condition and

trial, because we want to preserve the relationships between kinematic variables

at fixed times. At the same time, different warping functions need to be learned

for different replications.

Total energy signal. Alignment of multivariate curves is greatly simplified by

summarizing each multivariate curve by a univariate curve. We summarize the

trials based on the total energy signal based on the velocity of the markers. The

basic idea is that the velocity of the markers typically has clear peaks, valleys,

and zero crossings – features that are easily identified.

In order to describe the alignment procedure in a clear and compact way

we slightly overload notation in this Section and in the Supplementary Material

(S4.1) by denoting the original kinematic marker positions at time t as a matrix

(instead of a vector). In particular, we rearrange the elements in Yr(t) and

consider the matrix Yr(t) ∈ RK×3 where p = 3 ∗K and K = 16 is the number

of markers placed on the fingers (K is multiplied by three because of the 3-

dimensional positions of the markers). Likewise, Ẏ
r
(t) ∈ RK×3 refers to the

corresponding velocities. Thus Gr(t) = [Ẏ
r
(t)][Ẏ

r
(t)]T is the matrix of inner

products of marker velocities for each replication r in a specific condition, and

we define the total energy signal of a trial as the sum of the squared magnitudes

of the velocities across markers, which can be written as:

Er(t) = tr(Gr(t)) = tr([Ẏ
r
(t)][Ẏ

r
(t)]T). (3.1)

The total energy signal Er(t) is an important property of the trial because

it summarizes the magnitude of motion during a trial and condition. Our goal

is to estimate time warping functions hr(t) such that the phase variation of

t → Yr(hr(t)) is minimized across trials. One of the benefits of this signal is that

it is invariant under rotations of the 3-dimensional variables.

The MINEIG criterion. We estimate the time warping functions for each trial

or replication by minimizing the MINEIG criterion iteratively as formally explained

in Ramsay and Silverman (2005) and in the Supplementary Material Section
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Figure 1. Example of energy profiles raw and aligned (small cone, 45◦ ad-
duction). On the x -axis we show time and on the y-axis the value of the
energy functions.

(S4.1). The main idea is to take one replication at a time, and to iteratively

construct its warping function such that the shape of the warped energy is close

to the shape of the mean energy across replications of the same condition. This

procedure is done by iteratively optimizing the regularized objective function

written as (S4.2) and results in a warping function per replication that minimizes

the overall discrepancy of the energy curves for all replications from the mean

energy function. The warping functions are strictly monotone smooth functions

represented through a monotone smoother (B-spline basis) as in Equation (S4.3).

In Figure 1 we show raw energy profiles and their aligned versions.

Recovering the aligned kinematic curves. Having estimated hr(t), the

aligned velocity curves are Ẏ
r
(hr(t)), while the positional curves can be obtained

by integration:

Y0 +

∫ t

0
Ẏ

r
(hr(u))du, (3.2)

where Y0 corresponds to the initial hand configuration in the positional space.

4. Simulation Studies

We generated p = 50-dimensional data from a latent process of dimension

dtrue = 4. The dimensionality p of the observed simulated data roughly corre-

sponds to the grasping data analyzed in further sections. We considered T = 51

time points and set µ ∈ Rp×T deterministically as a sinusoidal function of time

with different amplitudes per coordinate: µk(t) = sin ([2 · k/p] · (t− k)) , k =

1, . . . , p; the entries of B ∈ Rp×d were drawn iid from U(0, 1); we set ρ = 0.25,

and assumed Σ(i, j) = exp
(
−(i− j)2/θΣ

)
with θΣ = 0.01.

Measures of goodness of fit. We summarize the mean square error (MSE)

of observation r at a particular time slice t as er(t) = (1/p)
∑p

i=1(Y
r
i (t) −
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Ŷ r
i (t))

2, and the mean integrated square error (MISE) of observation r along

time as er = (1/T )
∑T

t=1 er(t). These statistics summarize the reconstruction er-

ror. Also, in a specific simulation S we obtain the mean error in the simulation

as ES = (1/RS)
∑RS

r=1 er where RS is the number of observations in simulation

S. We report the average of ES across independent simulations S, and we also

report its corresponding standard error.

Number of required training samples. We explore the question of how many

training examples are required to achieve a certain performance and we compare

the differences between modelling µ free (unconstrained) and with splines with

initialization through down-projection, keeping Σ free (unconstrained). We kept

the latent dimension d fixed at dtrue = 4, we generated a single test set of size

500, and ten different training sets for each specific number of training examples.

Figure 2 shows that, in every case, performance improved in terms of reconstruc-

tion error as the amount of training data increased. We also notice that after

40 samples the performance levels off. There is no significant difference between

modelling µ unconstrained (as a matrix in Rp×T ) and µ with splines but, consid-

ering the number of parameters to be estimated, the best performance is achieved

with the modelling of µ as splines.

In our simulation we considered dtrue = 4. If we underestimate the true

latent dimension d, then no matter how large the training sample, we would not

be able to achieve the minimumMean Integrated Squared Error (or the maximum

loglikelihood). On the other hand, if we overestimate the latent dimension we can

potentially achieve the optima due to the models being ’nested’ as d increases,

but we will need more samples. In the presented simulations we do not provide

a quantification of how many more samples.

Latent dimension and reconstruction error. In the second simulation we

study the behavior of different models when varying the value of the latent di-

mension. We considered modelling µ as a constant across dimensions but varying

along time, as unconstrained or free (as a matrix in Rp×T ), and with B−splines.

We also considered two types of initialization: the matrix-normal MLE and the

down-projection of a solution from a higher dimension. We investigated the per-

formance in terms of reconstruction error, and we studied whether the model

and learning procedure were able to recover the true dimensionality of the data.

We set apart a single test set of 500 samples and 10 training sets of size 20 for

each value of d. We considered a training set of size 20 because this number

corresponds to the number of samples of a specific condition in a session.

In Figure 3 we display the average MISE on the test set, and the Bayesian

Information Criterion (BIC) on the test set for each of the considered models,

learning settings, and for various values of the latent dimension.
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Figure 2. MGPFM: Average MISE in the test set as a function of number
of training samples. The figure shows the results on a single test set of 500
samples using ten independent training sets of size 80. We report the average
mean error in the test set for the ten simulations ((1/10)

∑10
i=1 ESi) and its

standard error. The dimensionality of the observed data was p = 50 and the
latent dimension dtrue = 4. We modelled Σ as unconstrained, the µ with
splines and unconstrained, and initialized the learning algorithm with the
down-projection.

In terms of MISE, modelling µ as a constant resulted in the worst per-

formance. Modelling µ free yielded much better results in both initialization

regimes. While modelling µ unrestricted works well in terms of the mean inte-

grated square error, using splines drastically reduces the number of parameters

being estimated and, everything else constant, should be preferred. In addition,

using splines ensures that the µ is smooth. In terms of MISE, the initialization

regime played a bigger role when using splines than in the unconstrained setting

suggesting that in the more constrained case the algorithm is more susceptible

to local optima and requires smarter initialization.

The true latent dimension was recovered through use of BIC whenever the

learning method was initialized through the projecting procedure, and sometimes

with the MLE initialization. In all cases, the BIC was characterized by a very

fast drop until reaching the true value of the latent dimension d, and the steep

decrease was followed by either a slower decrease or slight increase in the BIC. The

clearest case occured when modelling µ with splines and performing initialization

through the projection procedure. In the supplementary material we show how

the model works in one run of the simulation.

5. Data Analysis

We analyzed the 48-dimensional finger motion captured data from 23 sessions
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Figure 3. MGPFM: Average MISE in the test set, and BIC for different
values of the latent dimensionality when varying the initialization regimes
and the ways of modelling µ. The true latent dimension d = 4 is most
obviously recovered when µ is modelled with splines and the initialization
is through the projection procedure. When µ is modelled with splines the
initialization regime has a large impact on performance.

of a rhesus monkey performing the reach-and-grasp task explained in Section 1.

For the analysis we considered five conditions: small cone and small handle

presented in positions 45◦ of flexion and 45◦ of adduction and for the small cone

at 45◦ of abduction. In each condition we considered all trials across sessions,

totalling in average 155 trials per condition.

We performed the analysis on the 3D velocity profiles, because velocity and

speed of hand movements are thought to be encoded in the activity of single

motor cortical neurons Moran and Schwartz (1999). Note that performing similar

analysis with joint angle velocity is also possible Vinjamuri et al. (2007, 2010a,b).

We denote the observed velocity profiles as Ẏ
r
(t) and fit the following model

where µ is modelled through splines,

Ẏ
r
(t) = µS(t) +BẊ

r
(t) + ϵr(t). (5.1)

Each reach-and-grasp replication lasted an average of 1.13 seconds, but each trial

was of different length. In order to make it comparable, we smoothed data with

a B-spline basis, resampling all trials onto 150 time slices.

For outlier removal we summarized each trial with its energy function (Equa-

tion 3.1) and clustered trials of a specific condition using the same function via

k−means. We applied the clustering algorithm for several values of k (2, 3, and

4) and aggregated the resulting clusters removing the smallest group that con-

tained at most 10% of trials and whose removal yielded the most visually uniform

set of energy profiles. The MGPFM was applied to the preprocessed raw data

and to the aligned data (as explained in Section 3). Figure 1 in Section 3 shows

an example of the same data in these two states.
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Analysis of performance varying models, alignment and latent dimen-

sionality. We compared the performance of the MGPFM to two different base-

lines in terms of the MISE. We first compared our model against a simple baseline,

namely modelling the data as a time varying mean; and secondly, we compared

MGPFM against PCA, the prevailing approach in literature. In addition, we

investigated whether aligning the data had an impact on the performance of the

models in terms of MISE. Finally, we investigated the impact of varying the size

of the latent dimension. We modelled µ with B-splines, Σ constrained, and we

initialized the model with matrix normal MLE.

To apply PCA, we stacked the training trajectories into a 2D matrix of

size (R · T ) × p, R the number of training samples, T = 150, and p = 48 the

number of kinematic variables. In applying this methodology we disregarded

time correlations (as is usual in conventional PCA), and for this reason it does

not make sense to align data before applying PCA.

We considered different conditions: each condition defined by the object and

the orientation in which it was presented. We obtained the 10-fold cross validated

MISE for the preprocessed raw data modelled with the mean, with PCA, and

with the MGPFM. We did the same with the aligned data modelled with the

mean and with the MGPFM.

Figure 4 shows a sample of the results of this experiment. Regardless of

alignment, PCA or the MGPFM considerably outperform the mean. However

the alignment helped in every setting including the mean, PCA, and MGPFM,

and it gave a significant improvement in MISE, particularly when modelling the

data only with the mean. Finally, MISE decreased in every case as the latent

dimensionality increased. We notice that the impact that alignment has on the

reduction of MISE is greater when the latent dimensionality is lower.

Results of a specific condition. We now discuss in some detail the results

of estimating the model parameters for the small cone presented with 45◦ of

abduction. We used the pre-processed and aligned data from all sessions (165

trials) and present the results of one of the ten folds (with 149 replications for

training, and 16 for test). We modelled µ with B-splines, Σ constrained, and

we initialized the model with the matrix normal MLE. For simplicity, we set the

latent dimensionality to be two.

In Figure 5 we plot the error in two ways: first, as a function of time, and

second, integrated across time for each replication. We compare the MSE of

MGPFM against a baseline of modelling only the mean. The top two plots show

that there is much more variation during certain time periods in the trials and

that the baseline is unable to capture this variation. The MGPFM significantly

reduces the error (by approximately an order of magnitude) in those time periods

by capturing the variation between trials.
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Small cone, 45◦ of flexion
Detail

Small cone, 45◦ of adduction
Detail

Figure 4. MGPFM: we show 10-fold cross validated MISE in grasping data
for two conditions (small cone flexion and adduction), comparing the baseline
model considering only the mean, PCA, MGPFM on raw pre-processed data
and MGPFM on aligned data. Experiments were run for various sizes of
latent dimensionality d. The MGPFM was applied modelling µ with splines,
Σ constrained, initializing with the MLE of the matrix normal distribution,
and 50 iterations of the learning procedure. Observe that the MGPFM
applied on aligned data achieves better results than other methods, but its
advantage decreases as the size of the latent dimension increases.

In Figure 3 of the Supplementary Material we show the observed data, the

model estimates and the residuals decomposed per marker and finger for a specific

replication. These plots, which are representative of the grasping behavior in the

dataset, show that the thumb’s amount of movement is very small as compared

to the amount of movement by all the other fingers. In other conditions (like

the small handle) this is also the case, but the contrast is particularly prominent

with the middle, ring, and index fingers. The MGPFM captures most of the

variation leaving residuals close to zero.

Interpretation of learned parameters. One of the main features of the
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Only mean MGPFM

Figure 5. Error profiles in data (small cone, 45◦ abduction). In the up-
per panel, each line corresponds to a replication and the dashed line is the
mean value. The lower panel displays the mean integrated square error
per replication. The MGPFM reduces the error significantly, as compared
to the baseline of modelling only the mean (by approximately an order of
magnitude).

MGPFM is that its parameters can be interpreted. Parameter µ is a trajectory

in the velocity space and, through (3.2), we are able to obtain corresponding

postures in the position space. In Figure 6 we show time slices of µ projected

onto the hand space that summarize the main features of the µ trajectory. The

mean parameter µ captures the shared behavior across all trials. In this partic-

ular condition, this behavior consists of five epochs that correspond to the hand

starting in a neutral position, followed by a slight opening of the fingers in a syn-

chronized fashion, back to a neutral position, after which the subject spreads his

fingers slightly before going back to neutral position. All trials in this condition

showed this pattern.

In contrast to the parameter µ that encodes behavior shared among all
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t0 − t50 t51 − t66 t67 − t77 t78 − t87 t88 − tend
Neutral Slight opening Neutral Finger spread Neutral

Figure 6. The trajectory µ̂ (projected onto the position space) represents
what is shared by all replications of a condition. Here we show the visual-
ization of µ̂ for the small cone at 45◦ of abduction. The trajectory presents
five epochs corresponding to hand postures: all plots are in the same scale
and the third epoch looks very similar to the first and last epochs (neutral
position), so we omit it. The trajectory begins at a neutral position, followed
by a slight opening of the grasp through a synchronized movement of fin-
gers and a slight rotation, then back to the neutral hand configuration after
which the fingers spread slightly (after the subject releases the object) and
back to a neutral position. All replications for this condition followed this
pattern; they differentiated among themselves with the movement modelled
through the loading matrix and the MGP term.

(1) Loading 1 (2) Loading 2

Figure 7. Visualization of loadings encoded in B̂ for the small cone presented
at 45◦ abduction. The first loading corresponds to synchronized opening-
closing of the hand; the second loading to curling of the fingers wrapping
around the cone. The estimation of B̂ is explained in the Supplementary
Material Section S1.2 and it can be reduced to solving a specific linear re-
gression problem (Equation (S1.9)).

replications, the term that includes the latent factors Ẋ and the loading matrix

B corresponds to the ways in which a replication differentiates itself from the

other replications. The factors Ẋ encode what is specific to each trial. Figure 8

shows Ẋ for two example replications superposed on the distribution of factors

for all replications. The factors for these two representative replications differ.

The estimate of the loading matrix B̂ is defined in Equations S2.8−S2.11

of the Supplementary Material, and even though B̂ is only identifiable up to

rotation we are able provide a limited interpretation after sorting the columns of
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B̂ in decreasing order of their norm. Figure 7 shows both columns of B̂ as a set

of K = p/3 = 16 vectors that correspond to the direction and relative magnitude

of change for each of the K markers. Column i of B̂, denoted by b̂i,· ∈ Rp, is

constructed by stacking K 3D vectors, each of which can be interpreted as the

3D direction of change of a particular marker as the learned latent variable Ẋ(t)

changes in the direction of the i-th dimension of the low dimensional space. Each

arrow in Figure 7 corresponds to a marker and is determined by Y0+α · b̂i,· where
Y0 ∈ Rp is the mean hand postural configuration at t = 1 of the training set and

α ∈ R is a scalar that controls the size of the arrow. Y0 is used simply to project

the data (which was learned in the velocity space) into the positional space, and

its selection can be arbitrary; multiplying by α preserves the relative contribution

to the motion of a particular marker with respect to the other markers.

The first loading, or first column, of B (left panel) encodes a synchronized

closing-opening motion of the fingers, whereas the second loading, or second

column, of B (right panel) encodes a movement that happens at a somewhat

different rate and direction per finger and whose net effect captures a wrapping

(or curling) of the fingers (as if around the cone). These two loadings represent

the ways in which trials differ amongst themselves in the magnitude of the grasp

opening and the emphasis of the curling motion.

In this analysis we considered d = 2 for illustrative purposes (in the sim-

ulations we showed how we can use BIC to select the dimension). In principle

though, there is nothing that prevents us from providing an interpretation of

the learned loadings when d > 2 in the same manner as we did above. In fact,

columns of the loading matrix with smaller norm correspond to smaller variabil-

ity of the kinematics of the hand. However, as d increases, the loadings will most

likely be harder to interpret due to the fact that we start modelling noise (as in

PCA).

Under the conditions specified in Section 2.2, the factor loadings are iden-

tifiable. In this case, it makes sense to interpret the learned latent factors in

the model. Whereas ˆ̇X is estimated in the velocity space, it is more intuitive to

visualize the differences between trials on the position space by integrating the

latent factors along time and adding the corresponding initial hand posture (as

in (3.2)). In this way we are able to compare the two replications in the posi-

tional space at specific time periods, for instance, between time points 50 and

58 (it is valid to compare the two replications at the same time period because,

through the alignment procedure, we have accounted for the phase variation).

We observe that, whereas the first factor corresponding to replication 1 transi-

tions from ˆ̇X1(t = 50) = +54.19 to ˆ̇X1(t = 58) = −684.8 (with a net change of

−738.99), the first factor of replication 2 changes from ˆ̇X1(t = 50) = +73.21 to
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Learned factors Integrated learned factors
(velocity) (position)

Figure 8. Learned factors ˆ̇X for condition: small cone, 45◦ abduction. In the
top panel we show (in green) the distribution of learned factors in the velocity
space (left) and their integrated version on the positional space (right). This
figure depicts differences between trials in the space of learned factors. On
this plot we overlap two exemplary trials. In the middle and lower panel
we show details of these replications: the shape and values they display are
different. The starting point of the trial is denoted by an open circle, the end
position, by a star. There are arrows along the trajectory show the direction
of movement. Arrows marked with different symbols represent time and
allow for comparison between trajectories: arrow with circle (33%), arrow
with star (40%), arrow with spade (50%), arrow with double spade (54%),
arrow with cross (60%). In Figure 9 we show how difference between the
integrated learned factors in these two trials manifest on hand posture.
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ˆ̇X1(t = 58) = −178.5 (with a net change of −251.71). While the net change is

not meaningful by itself, the relative change is. The first/corresponding column

in the loading matrix B suggests that these changes should result in an exag-

gerated opening of the hand in replication 1 as compared to replication 2. And,

indeed by visualizing Ŷ (and the observed data Y ) we verify that the hand in

replication 1 opens further than in replication 2 (see Figure 9).

Thus each of the elements of the MGPFM can be mapped to the actual

configuration of the grasping curves and we can provide physical and intuitive

interpretation, albeit somewhat limited by the issue of identifiability up to ro-

tation. Furthermore, we can differentiate the variability that corresponds to a

specific replication from the variability shared among all trials from a specific

condition. Finally, we are also able to accurately recover (in terms of reconstruc-

tion error) hand configurations from the estimated parameters and factors.

6. Discussion

In this paper we formulated a dynamic factor model based on Multivariate

Gaussian Processes to study grasping kinematics. We developed an algorithm for

inference and parameter estimation for the MGPFM and discussed variations of

the model and algorithm. We showed in simulations that our model outperforms

PCA in the reconstruction of error when alignment is applied. In contrast with

PCA or SVD, we are able to differentiate sources of variation that can potentially

be used to design robotic primitives for grasping devices. Ciocarlie, Goldfeder,

and Allen (2007), for example, show how to use PCA for such purposes; in

contrast, our MGPFM incorporates time modelling into the primitives. The

MGPFM can also be extended by assuming prior distributions in the parameters

(for instance, in the loading matrix), and can capture long range correlations that

can potentially improve the prediction of coordinated dexterous hand motions.

The MGPFM is also easy to adapt to new settings — we can add sensors, change

the representation to joint angles, and the same algorithms apply in principle.

Furthermore, though we have not addressed the application here, the MGPFM

can potentially be extended to incorporate neural data as a controller for the

kinematic motion of a robotic arm. Saleh, Takahashi, and Hatsopoulos (2012),

for example, decode from neural data PCA-reduced kinematic configurations in

a short period of time; a potential extension of our model would explicitly model

and exploit temporal structure.

The MGPFM probabilistically models the relevant grasping structure and

separates it from noise; but our core methodological contribution is a strategy

to decompose and reduce the dimensionality of the variation of the data ac-

cording to the experimental structure (time, condition and replications). The

decomposition of variance in the grasping datasets relied on the application of a
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Position Corresponding hand configurations

(
∫ ˆ̇X1,

∫ ˆ̇X2) t = 50 t = 58

Figure 9. Interpretation of latent factors showing differences between repli-

cations. On the left we plot (
∫ ˆ̇X1(t),

∫ ˆ̇X2(t)) as a function of t. The start
of the trial is at the open circle, the solid dot corresponds to t = 50, the tri-
angle to t = 58 and the star to the end of the trial. Middle and right panels:
hand configurations corresponding to those time points. The interaction
between the first latent factor (moving negatively) and the corresponding
loading (Figure 9 panel 1) corresponds to an opening of the fingers in a syn-
chronized manner – this movement differs between the two replications and
leads to an exaggerated opening of the hand in replication 1 (top panel).

multivariate functional alignment procedure. A major product of this approach

is the decomposition of variability between what is common in replications and

what is specific for each trial; it also provides clear interpretation in the space of

grasp postures. In particular, visualizations of the shared mean trajectory µ, of

the axis of variation in replications encoded in the loading matrix B, and of the

specific differences in particular trials summarized in the latent factors X helped

to explain variability in grasping movements.
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